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Structural learning of functional directed graphical models
with incomplete signals
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ABSTRACT
Functional directed graph model (DGM) learning has been widely used
to analyze complex systems. Most existing works assume that the func-
tional signals are complete, which in reality is not true. To address this
problem, in this study, a framework for DGM learning with incomplete
signals is proposed. Specifically, a penalty term that integrates informa-
tion from the graph structure is added to the Maximum Margin Matrix
Factorization (MMMF) objective function. The proposed method can be
used with a known structure to estimate the functional relationship
between nodes or with an unknown structure to estimate the relation-
ship together with the graph structure. Numerical experiments and a
real-world case study of monocrystalline silicone manufacturing are per-
formed to verify the effectiveness of the proposed method when the sig-
nal matrices are incomplete.
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1. Introduction

In various fields, such as environmental concerns, cognitive maintenance, supply chain and man-
ufacturing, systems have become increasingly complex due to the emergence of numerous com-
ponents and the relationships among them (Langseth and Portinale 2007; Cao, Sandstede, and
Luo 2019; Tan, Zhang, and Cai 2019; Estrada, Paynabar, and Pacella 2021; Guo and Zhang 2021;
Han et al. 2021; Xia et al. 2022). Many applications have shown that the DGM is a useful tool
that can provide a probabilistic representation of these complex systems, in which nodes repre-
sent components or entities and directed arcs representing functional relationships between nodes
(Tan, Zhang, and Cai 2019; Estrada, Paynabar, and Pacella 2021).

Although most of the DGMs assume the observations of nodes to be scalars, the developing
sensor technology has improved the accuracy and amount of data collected from components
of systems, which makes functional observations of nodes available. Functional observations are
collected in signal form with high fidelity and frequency. However, in real-world applications,
for various reasons such as reading/writing errors, sensor faults, or interruptions during long
processing cycles, the actual collected signals are sometimes incomplete (Fang et al. 2021; Yan
et al. 2022). In this work, we focus on scenarios in which functional signals are partially
observed as shown in Figure 1. Note that for convenience, the shown pattern involves random
absence, but several other patterns of missed data, such as non-uniform missing (continuous
missing) and imbalanced missing (different proportions for each signal) data, are considered in
this study, and a detailed description can be found in Sec. 3. The existence of incomplete
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signals is a challenging problem when learning DGMs because simply deleting observations
consisting of incomplete signals would cause great information loss while utilizing normal sig-
nal completion methods would contradict the hidden relationships between nodes.

Using the pulling process in monocrystalline silicone manufacturing as a motivating example,
Figure 2 shows a diagram of the growth stove, which uses the Czochralski Method (CZ method),
a commonly used technology in monocrystalline silicone manufacturing, for the pulling process.
The whole system consists of multiple subsystems with different purposes such as vacuum con-
trol, gas supply, thermal field control, electricity supply, and transmission control systems.
Monocrystalline silicone ingots are gradually formed when the crucible rotates, and a thread with
a seed crystal attached to the end pulls upward from the molten polysilicon liquid. Due to the
nature of monocrystalline silicone growth, the formation process consists of stages such as shoul-
der growth, body growth, and tail growth. Multiple sensors for measuring temperature, power,
speed, weight, and length are installed in the system to collect data by monitoring and controlling
the state of the process. As each process cycle usually lasts multiple days, the observations from
each collected variable are shown in a functional form. These measured variables are physically
connected with each other, and thus naturally constitute a complex relationship network that can
be described by a DGM. Therefore, it is essential to learn the structure and estimate the relation-
ship among the nodes of the DGM that represents the system. However, in harsh operating envi-
ronments, some of the observations could be missing because of the reasons mentioned above.
Poor contact of the sensors might cause continuous missing and high-temperature of internal
environment might cause sensors generating invalid readings. Therefore, a novel method is

Figure 1. A simplified illustration of the differences between incomplete signals and complete signals (red points represent the
observed data, and lines represent the potential curves).

Figure 2. A simplified view of the CZ method as used in the monocrystalline silicon manufacturing process.
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needed to accurately learn and monitor the structure of DGMs as well as functional relationships
between nodes when using incomplete signals.

Consider the spatial-temporal modeling for the wind farm as another example, where a num-
ber of wind turbines are usually located in groups and a complex network system consists of vari-
ous variables might influence power output of the whole wind farm (Pourhabib, Huang, and
Ding 2016). However, wind farms are usually located in remote areas and long-distance data
transmission would cause the poor quality of the available signals for variables like wind speed
and pitch angles of turbine blades. As is shown in the above example, it is convinced that signal
incompletion is an essential problem in modeling complex sensor systems like DGMs.

There have been many studies on the learning of DGMs, one of which used graphical LASSO
to estimate the functional relationship between nodes of scalar observations (Yuan and Lin 2007).
Although methods for structure learning and parameter estimation using DGMs with scalars have
proven to be effective, they cannot be simply utilized in functional DGM learning. An extension
of graphical LASSO has been proposed to address functional DGM learning (Qiao, Guo, and
James 2019). Additionally, Bayesian and non-parametric methods have been shown to be effective
(Zhu, Strawn, and Dunson 2016; Li and Solea 2018). These methods, however, are designed for
undirected functional graphical models. To address the small sample size problem, a sparsity pen-
alization approach has been developed to robustly learn the functional DGM (Sun, Huang, and
Jin 2017). Group LASSO has also been utilized to effectively learn the structure together with the
relevant parameters; this strategy employed a cyclic coordinate accelerated proximal gradient des-
cent algorithm (Estrada, Paynabar, and Pacella 2021). However, the methods mentioned above
are unable to address functional DGMs with incomplete signals, and therefore, an effective com-
bination of the functional DGM learning method and signal completion method is needed.

Learning functional DGMs with incomplete signals can be considered an adjusted matrix com-
pletion problem, which is also a common problem in recommender systems (Matsuda and Komaki
2019). Among these matrix completion methods, matrix factorization (MF) has been shown to be
effective under the low-rank assumption. There have been several variants of MF, including SVD
Feature (Chen et al. 2012), Alternating Least Square (Tak�acs and Tikk 2012) and Zipf Matrix
Factorization (Wang 2021). However, these methods are not designed for incomplete problems with
graphical structures. Alternatively, a simple solution executes these matrix completion methods for
each node and then learns the structure and parameters as usual. This heuristic causes the results of
matrix completion to violate the potential graphical structure since it neglects the functional rela-
tionships between nodes, which would be evident in the numerical experiments.

In general, there have been a few attempts to effectively combine signal completion methods
and functional DGM learning methods. In this study, a novel adjusted matrix completion method
is proposed to learn the structure and functional relationship of DGMs with incomplete signals.
Based on the Maximum Margin Matrix Factorization (MMMF) algorithm, a specially designed
penalty term has been added to the objective function of matrix completion to integrate the
knowledge of DGMs. Specifically, when the structure of the DGM is unknown, several steps
including signal completion, parameter estimation, and variable selection, are operated recurrently
to obtain an accurate estimation of the parameters and structure of the DGM. Additionally, the
proposed method is robust to different proportions of signal incompletion and various modes of
missing data. In real-world cases, based on the learned DGM of the proposed method, a potential
relationship between variables can be provided to help analyze the system network when little
expert knowledge is available.

The remainder of this article is organized as follows: In Sec. 2, the proposed model and rele-
vant parameter estimation procedures are presented in detail. Examples including numerical
experiments and a real-world application are presented in Secs. 3 and 4, respectively, to verify the
efficiency of the proposed method. Finally, conclusions and findings that can be drawn from this
research are summarized in Sec. 5.
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2. Model

For different application settings, the structural relationship may or may not to be known.
Therefore, in this section, we first introduce the formulation of the problem and then develop
learning methods for cases with known and unknown graph structures.

2.1. Problem formulation

Consider a system with M components, which serve as nodes of the DGM to be learned with N
observations. xmi tð Þ, m ¼ 1, :::,M, i ¼ 1, :::,N, t 2 0,Tm½ � denotes the ith observation of the mth
node at time t: Note that we do not assume the lengths of signals from different nodes to be the
same, which is suitable for cases where the sensors from different nodes might have different
acquisition frequency of signals. Therefore, we assume the length of the signals from the mth
node to be Tm: A simplified illustration of the data structure is shown in Figure 3, which depicts
a simple graph with 1 root node and 2 leaf nodes.

In real-world applications, signals are observed at a specific frequency, that is, over a grid of
size Lm for the mth node. Then, the collected data of observations from the DGM can be denoted
as xmitjm ¼ 1 � � �M, i ¼ 1 � � �N, t ¼ 1 � � � Lmf g: The data matrix from the mth node is denoted
by SN�Lmm , and the element of the ith row and tth column are denoted as xmit , i ¼ 1 � � �N, t ¼
1 � � � Lm: However, the signal matrix Sm is incomplete for various reasons, and the observed
matrix is denoted as SXm

m , where Xm is the set of indices whose values are observed in the matrix.

Xm ¼ i, jð Þ : j 2 Xi
m, i ¼ 1, :::,N

� �
, where Xi

m � 1, :::, Lmf g: Therefore, the final available dataset

is SX1
1 , � � � , SXM

M

n o
:

The structure of the DGM is assumed to be a directed acyclic graph (DAG), which is a com-
monly used assumption in previous works (Sun, Huang, and Jin 2017; Estrada, Paynabar, and
Pacella 2021). Therefore, the arcs of the DGM cannot fix a cycle, which allows the joint distribu-
tion of the nodes to be ordered. If there is an arc from i to j, then node i is called the parent of
node j: Specifically, nodes without parents are called root nodes. A DAG can be uniquely
expressed by a node set and an arc set, G ¼ N ,Af g, where N ¼ 1, :::,Mf g, and A is a set of
paired nodes i, jð Þ 2 A if there exists an arc from i to j: In this work, the arcs are assumed to be
a relationship in the form of a function-to-function linear regression as shown in Eq. (1):

xmi tð Þ ¼ am tð Þ þ
X

l2Pa mð Þ

ðTl

0
cl,m s, tð Þ xli sð Þdsþ emi tð Þ (1)

where Pa mð Þ is the parents’ set of node m; cl,mðs, tÞ is the F-to-F coefficient function that depicts
the influence of the sth timepoint of node l on the tth timepoint of node m; and am tð Þ and emi tð Þ

Figure 3. Illustrative example of the data structure.
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are the constant term and the error term, respectively. Specifically, emi tð Þ is assumed to be the
product of noise scale rm and a standard Gaussian random variable �mi tð Þ, which makes the con-
ditional distribution that shown in Eq. (2) given the DAG structure.

xmi tð Þ � N am tð Þ þ
X

l2Pa mð Þ

ðTl

0
cl,m s, tð Þ xli sð Þds,r2m

 !
(2)

According to the description shown above, the aim is to learn the functional relationship
cl,m s, tð Þ ,m ¼ 1 � � �M, l 2 Pa mð Þ if the structure of the DGM is known, that is, if A is known
(details are provided in Sec. 2.3) or to learn the functional relationship cl,m s, tð Þ together with
the potential structure when A is unknown (details are provided in Sec. 2.4) using the observed
incomplete signal matrices SX1

1 , � � � , SXM
M

n o
:

2.2. Methodology framework

In this work, we separate the problem of DGM learning with incomplete signals into two scen-
arios: the graph structure A is (1) known or (2) unknown. Although it seems that these two scen-
arios are completely different, the methods used to solve them share many steps. The framework
of the proposed method for addressing these two scenarios is shown in Figure 4.

When the structure of the graph is known, the whole graph learning procedure consists of
three parts: MMMF, FPCR, and structure-based adjusted MMMF. The original MMMF is first
utilized to complete the signal matrix of the aimed node only using information from its
observed matrix, SXm

m : Then, functional principal component regression (FPCR) is used to esti-
mate the coefficients of the function-to-function regression (F-to-F regression), which is sup-
ported by the complete matrices of the target node and its parents. However, since the
information from the F-to-F regression is not used in the former matrix completion step, an
adjusted MMMF method is utilized to better complete the signal matrix by removing the influ-
ence of both the F-to-F regression effect and the low-rank effect from the partially observed sig-
nal matrix. These steps are executed recursively until certain convergence conditions are satisfied,
with outputs of the estimated regression coefficients and complete matrices.

On the other hand, if the structure is unknown, most steps are the same as those for the
known-structure scenario, except that when estimating the regression coefficients, group LASSO

Figure 4. Flow diagram of the proposed method for each node in two scenarios (rectangles represent steps, and ellipses repre-
sent the used models).
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is utilized to learn the parents from the candidate parents set of the target node and estimate the
corresponding regression coefficients at the same time. Naturally, the output in this scenario con-
tains learned structure A along with the F-to-F regression coefficients of each arc.

Additionally, there are nodes without parent nodes or candidate parent nodes, which we call
root nodes. When completing the signal matrices using the root nodes, there is no regression
effect from the parent nodes, and therefore, the only step involves using the MMMF once to
obtain the estimated complete matrix. Note that the steps in the flowcharts should be operated
on each node of the graph, and the input for the flowcharts is the incomplete matrix of the target
node (child node) and complete matrices of its parents’ node set, which are omitted if not avail-
able. Although the matrices from all nodes are assumed to be incomplete from the beginning, the
conditions can be satisfied if the nodes are scanned and handled in a specific order, as suggested
by the DAG assumption, because the output of the flowcharts contains a complete matrix of the
child node that can be used to complete its child nodes.

In this framework, MMMF, FPCR, or group LASSO, and structure-based adjusted maximum
margin matrix factorization (MMMF) are used in three steps recursively rather a joint framework.
The main reason for this design is that it is difficult to give a explicit representation of structural
information other than the regression estimation when considering dimensional reduction and
matrix completion at the same time, since the completion results would affect the extracted
subspace.

2.3. DGM learning with a known structure

In this section, steps from the known structure components in Figure 4 are shown in detail. In
the first part, the input is a partially observed matrix, SXm

m for node m, and the output is a recov-
ered complete matrix denoted by SCm: In practice, since rows of Sm are usually observations of
samples of a variable in the same process, the original matrix Sm is assumed to have a low-rank
property. As for the completion technique, FPC is also widely used in data recovery (Zhou,
Gebraeel, and Serban 2012; Sun, Liao, and Upadhyaya 2014). However, the subspace extracted by
their methods is learned by a proportion of complete signals or given by specified basis functions
like B-spline methods, which is not suitable when data missing exists in all signals with various
missing patterns. MMMF is chosen as the method for matrix completion for the low-rank prop-
erty with no constraints on the missing data, for example, missing proportions and missing pat-
terns. The objective function of the MMMF is expressed as:

min
SCm
kSXm

m � XmYmð ÞXmk2F þ k kXmk2F þ kYmk2F
� �

s:t: SCm ¼ XmYm

(3)

where the recovered matrix SCm is set to the product of two low-rank matrices, XN�K
m and

YK�Lm
m K � min N, Lmf gð Þ; k � k2F is the Frobenius norm; and k is the tuning parameter, which

can be selected by cross-validation together with rank K: Objective function (3) consists of two
penalty terms. The first term causes the recovered matrix SCm to have small differences from SXm

m
in the observed indices, and the second term guarantees that recovered matrix SCm has a smaller
rank. To solve this optimization problem, there are many existing algorithms (Balzano, Nowak,
and Recht 2010; Toh and Yun 2010). One straightforward method is the gradient descent algo-
rithm. After initialization of Xm and Ym, Xm ¼ x1, � � � , xNð ÞT , Y ¼ y1, :::, yLmð Þ are set, and
xi, yjði ¼ 1 � � �N, j ¼ 1 � � � LmÞ are K-dimensional column vectors. The loss function of Eq. (3)
can be rewritten as:

L ¼
X

i,jð Þ2Xm
sij � xTi yj
� �2 þ k kXmk2F þ kYmk2F

� �
(4)

6 D. LI AND K. WANG



where sij is the element of the ith row and jth column in SXm
m : The following updating equations

are recursively executed for each i, jð Þ 2 Xm until convergence.

x tþ1ð Þ
i ¼ x tð Þ

i þ j dijy
tð Þ
j � kx tð Þ

i

� �
(5)

y tþ1ð Þ
j ¼ y tð Þ

j þ j dijx
tð Þ
i � ky tð Þ

j

� �
(6)

where dij ¼ sij � xTi yj and j is the learning rate. The convexity of the optimization problem (3)
makes the algorithm efficient for getting a better solution in an iterative way.

In the second part, the complete matrices of the target node and its parent nodes are used to
estimate the coefficients of the F-to-F regression. Additionally, an estimated matrix for the target
node can be provided according to the resulting regression coefficients. To better explain this
part, theoretical derivations are provided before the discretized form is shown. Since the dimen-
sions of the signal matrices, Lm and N, are relatively large, certain dimension reduction methods
are needed. In this work, functional principal component analysis (FPCA) is chosen; if domain
knowledge is available, prespecified basis functions could also be utilized (Estrada, Paynabar, and
Pacella 2021). Recall that for the functional signal collected from node m, xmiðtÞ can be decom-
posed by eigenfunctions given by the covariance function cov xm sð Þ, xm tð Þ� �

as follows:

xmi tð Þ ¼
X1
p¼1

fmipwmp tð Þ (7)

where wmp tð Þ are eigenfunctions and fmips represents the respective FPC scores. Similarly, the
functional signals from the parents of node m can be decomposed as:

xli tð Þ ¼
X1
q¼1

nliqhlq tð Þ, l 2 Pa mð Þ (8)

where hlq tð Þ are eigenfunctions and nliqs are the respective FPC scores. Additionally, the coeffi-
cient function cl,m s, tð Þ in Eq. (1) can also be decomposed by eigen functions wmp tð Þ and hlq tð Þ
as in (Horv�ath and Horv�ath 2012):

cl,m s, tð Þ ¼
X1
p¼1

X1
q¼1

bmlpqwmp tð Þhlq sð Þ (9)

Substituting Eqs. (7) and (8) into Eq. (1), the function-to-function linear regression can be
rewritten as: X1

p¼1
fmipwmp tð Þ ¼

X
l2Pa mð Þ

ðTl

0

X1
p¼1

X1
q¼1

bmlqwmp tð Þhlq sð Þ
X1
q¼1

nliqhlq sð Þds

þemi tð Þ
(10)

To achieve the objective of dimensional reduction, we select the former Pm and Pl eigenfunc-
tions as approximation of the original functional signals xmi tð Þ and xli tð Þ, respectively. Together
with the orthogonal properties of wmp tð Þs and hlq tð Þ s, Eq. (10) can be reduced as:XPm

p¼1
fmipwmp tð Þ ¼

X
l2Pa mð Þ

XPm
p¼1

XPl
q¼1

bmlpqnliqwmp tð Þ þ rm�mi tð Þ (11)

Furthermore, multiplying Eq. (11) by wmp tð Þ obtains a multiple linear regression form with
FPC scores serving as variables:

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 7



fmip ¼
X

l2Pa mð Þ

XPl
q¼1

bmlpqnliq þ rm�mip (12)

where �mip ¼
Ð Tm

0 wmp tð Þ�mi tð Þdt: The matrix form of Eq. (12) is expressed as follows:

fm ¼
X

l2Pa mð Þ
nlbml þ rmΕm (13)

where fm 2 R
N�Pm with the element in the ith row and pth column are fmip, i ¼ 1 � � �N, p ¼

1 � � � Pm; nl 2 R
N�Pl with the element in the ith row and qth column are nliq, i ¼ 1 � � �N, q ¼

1 � � � Pl; bml 2 R
Pl�Pm is the coefficient matrix where the element in the qth row and pth column

is bmlpq, q ¼ 1 � � � pl, p ¼ 1 � � � Pm; and Εm is the error matrix. This form can be developed further

by integrating the variables from the parent nodes and setting Nm 2 R
N�
P

l2PaðmÞPl to be the joint

FPC score matrix and Bm 2 R

P
l2PaðmÞPl�Pm to be the joint coefficient matrix, which would obtain:

fm ¼ Nm Bm þ rmΕm (14)

and the estimation of coefficient matrix Bm is provided by the squared loss:

B̂m ¼ NT
mNm

� ��1
Nmfm (15)

In real applications with discretized signal matrices SCm and SCl s, PCs fm and Nm are similarly
extracted, and the SVD result of signal matrix from the target node is SCm ¼ UmKmVT

m: Then, the
prediction matrix for the incomplete signal matrix of the target node is as follows:

SRm ¼ NmB̂m � ~Vm ¼ f̂m ~Vm (16)

where ~Vm 2 R
Pm�Lm is the transpose of the former Pm columns of VT

m, which also represents the
projection matrix of SCm; and SRm is the output of the second part, which is the estimated signal
matrix from the F-to-F linear regression representing the information from the graph structure.
Recall that the input to the second part SCm is a low-rank matrix, that is, rank SCm

� � ¼ K: If the
number of principal components is selected to be K, then there is no information loss from the
original matrix SCm to the score matrix fm:

In the third part, a more accurate recovered matrix SCm is estimated by an adjusted MMMF
method using information from both the incomplete signal matrix and the graph structure, that
is, SXm

m , SRm, which is also the main contribution of this work. The objective function of the
adjusted MMMF is as follows:

min
SCm
kSXm

m � XmYmð ÞXmk2F þ lkSRm
�Xm � XmYmð Þ �Xmk2F þ k kXmk2F þ kYmk2F

� �
s:t: SCm ¼ XmYm

(17)

where �Xm ¼ ði, jÞj i, jð Þ 62 Xm, i ¼ 1 � � �N, j ¼ 1 � � � Lm
� �

is the complementary set; SRm
�Xm ,

XmYmð Þ �Xm are the elements from the indices in �Xm from the original matrices SRm and XmYmð Þ,
respectively; and the other notations have the same meanings as in Eq. (3). Compared with the
original objective function of the MMMF, a specially designed penalty (the second term in Eq.
(17)) is added, which comes from the straightforward idea that the final recovered signal matrix
should not violate the partially observed matrix SXm

m , or the estimation from the F-to-F regression
relationship SRm: Note that SRm comes from the signal matrices from parent nodes after completion
and the estimated coefficient functions. Since the completion process is operated from root nodes
to seed nodes, the signal matrices from parent nodes of node m, that is, Sj ji 2 Pa mð Þ CpaðmÞ

n o

8 D. LI AND K. WANG



are considered to be relatively accurate. On the other hand, we have assumed that the relationship
between nodes is modeled in the form of linear F-to-F regression. Therefore, the prediction matrix
SRm contains the structural influence from parents’ nodes. Although it might not be accurate, it is
considered to be a better prediction on the unavailable indices �Xm compared to the complete matrix
from former iterations. This is also the reason why we need to recursively operate the estimation
steps A tuning parameter l is also added to balance these two effects to fit various situations. Similar
to the first part, the loss function and related updating equations are expressed as follows:

L ¼

X
i,jð Þ2Xm

sij � xTi yj
� �2 þ l

X
i,jð Þ2 �Xm

sRij � xTi yj
� �2

þk kXmk2F þ kYmk2F
� � (18)

x tþ1ð Þ
i ¼ x tð Þ

i þ j dijy
tð Þ
j � kx tð Þ

i

� �
(19)

y tþ1ð Þ
j ¼ y tð Þ

j þ j dijx
tð Þ
i � ky tð Þ

j

� �
(20)

dij ¼
sij � xTi yj, if i, jð Þ 2 Xm

l sRij � xTi yj
� �

, otherwise

8<: (21)

where Xm ¼ x1, � � � , xNð ÞT , Ym ¼ y1, :::, yLmð Þ; and j is the learning rate. To fasten the conver-
gence speed and strengthen the stability of the estimation result, the solution from last recurrent
iteration, that is, SCm

ðs�1Þ
, serves as the initial solution. Specially, the solution of Eq. (4) actually

provides the initial solution in the first recurrent step.
In general, we start with the first part and operate the last two parts recursively until conver-

gence. There are two parts in the proposed framework that involves the convergence condition
issues. The first part is when using stochastic gradient descent algorithm to solve MMMF and
adjusted MMMF, that is, Eqs. (4) and (18). In this work, the convergence condition for these two
solutions is given as follows:

kX tð Þ
m � X t�1ð Þ

m k2F þ kY tð Þ
m � Y t�1ð Þ

m k2F < h0 (22)

where t is the iteration number of the algorithm; h0 is a predetermined threshold, which is set accord-
ing to the dimensions of Xm and Ym: The second part is when judging whether to stop the recurrent
steps shown in Figure 4, that is, FPCRþ adjusted MMMF. The convergence condition is given as:

kSCm
sð Þ � SCm

s�1ð Þk2F < h1 (23)

where s is the iteration number; h1 is a predetermined threshold, which is set according to the
dimensions of SCm: The proposed method with known structure is summarized in Algorithm 1.

Algorithm 1: Matrix completion with known graphical structure

Input: incomplete signal matrices SXm
m

� �
, m 2 1, :::,Mf g; structural informa-

tion Pa mð Þ, m 2 1, :::,Mf g
Output: complete signal matrices Scmf g, m 2 1, :::,Mf g

(1) Denote the node setMr to be the nodes that are ready for completion,Mu to the nodes that
are not ready for completion, Mc to the nodes that are completed and the whole node
setM¼ 1, :::,Mf g
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(2) InitializeMr ¼ k 2 MjPa kð Þ ¼ ;
� �

,Mu ¼ k 2MjPa kð Þ ¼ ;
� �

,Mc ¼ ;
(3) whileMc 6¼ M do
(4) Randomly choose a node, m, fromMr

(5) Utilize MMMF in (3)–(6) based on SXm
m to get Scm

ð0Þ

(6) if Pa mð Þ ¼ ; then
(7) Scm  Scm

ð0Þ

(8) else
(9) Set s ¼ 0
(10) do
(11) Utilize FPCR (11)–(16) based on Scm

ðsÞ and Scj jj 2 PaðmÞ
n o

to get SRm
ðsÞ

(12) Utilize the adjust MMMF in (17)–(21) based on SXm
m , SRm

ðsÞ
to get Scm

ðsþ1Þ

(13) Set s sþ 1
(14) until convergence condition (23) is satisfied
(15) Scm  Scm

ðsÞ

(16) end do
(17) end if
(18) UpdateMc  Mc [ mf g
(19) UpdateMr  k 2MnMcPa kð Þ ¼ ;

� �
[ k 2 MnMcPa kð Þ � Mc

� �
(20) UpdateMu  Mn Mc [Mrf g
(21) end while
(22) return Scmf g, m 2 1, :::,Mf g

2.4. DGM learning with an unknown structure

Different from Sec. 2.3, it is assumed that the graph structure A is unknown in this scenario.
However, a new assumption is added: that the candidate parent set of each node Cpa mð Þ, m 2
N is known and is an empty set when the mth node is a root node. Naturally, the real parent set
is a subset of the candidate parent set, that is, Pa mð Þ � CpaðmÞ: This assumption is reasonable in
real-world applications. Even if no relative domain knowledge is known, we can set Cpa mð Þ ¼
1 � � �m� 1f g, m 2 N to maintain the DAG assumption. Comparing these steps to those when
the structure of the graph is known, the only difference is the second part, while the other two
parts are the same as in Sec. 2.3, which will not be explained in this section.

In the second part of this scenario, an estimation of the signal matrix is also needed in the
case of an unknown structure, which dictates that the input of this part is SCm and SCl , l 2
CpaðmÞ: Similarly, PCs are extracted to construct the linear regression function as:

fm ¼
X

l2Cpa mð Þ
nlbml þ rmΕm (24)

where the notations have the same meanings in Eq. (14). However, the output of this part con-
tains not only the parameters bml and resulting estimated matrix SRm, but also the learned struc-
ture, that is, dPaðmÞ, which means that b̂ml ¼ 0 when l 62 dPaðmÞ: Therefore, the group LASSO
method is utilized with the respective loss function:

L bmll 2 Cpa mð Þð Þ ¼ 1
2

���fm � X
l2Cpa mð Þ

nlbml

���2
2

þl
X

l2Cpa mð Þ

ffiffiffiffiffiffiffi
qml
p kbmlk2 þ

k
2

X
l2Cpa mð Þ

kbmlk22
(25)

where qml is the size of bml and l, k are relative tuning parameters. The first term is the squared
loss from Eq. (24). The second penalty term ensures the sparsity of the coefficient matrix, where
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the first-order penalty selects variables that are highly correlated with the output variables and
omits the rest (Hastie, Tibshirani, and Wainwright 2015). The third penalty term selects a few
variables from groups that are highly correlated with others (Zou and Hastie 2005). The details of
the algorithm in terms of minimizing this loss function and obtaining estimated coefficients b̂ml

can be found in a previous work (Estrada, Paynabar, and Pacella 2021). Therefore, the estimated
signal matrix from the F-to-F regression effect SRm can be calculated similarly to Sec. 2.3, anddPaðmÞ is also achieved according to b̂ml, that is, dPaðmÞ ¼ l 2 CpaðmÞjb̂ml 6¼ 0

n o
:

In this scenario, the convergence condition for the recurrent steps, that is, group
LASSOþ adjusted MMMF is given as:

kSCm
sð Þ � SCm

s�1ð Þk2F < h1 and dPa mð Þ sð Þ ¼ dPa mð Þ s�1ð Þ (26)

The proposed method with unknown structure is summarized in Algorithm 2.

Algorithm 2: Matrix completion with unknown graphical structure

Input: incomplete signal matrices SXm
m

� �
, m 2 1, :::,Mf g; inaccurate structural informa-

tion Cpa mð Þ, m 2 1, :::,Mf g ¼ M
Output: complete signal matrices Scmf g, m 2 1, :::,Mf g and estimated struc-
ture dPaðmÞ, m 2 1, :::,Mf g
(1) Denote the node setMr to be the nodes that are ready for completion,Mu to the nodes that

are not ready for completion, Mc to the nodes that are completed and the whole node
setM¼ 1, :::,Mf g

(2) InitializeMr ¼ k 2 MjCpa kð Þ ¼ ;� �
,Mu ¼ k 2MjCpa kð Þ ¼ ;� �

,Mc ¼ ;
(3) whileMc 6¼ M do
(4) Randomly choose a node, m, fromMr

(5) Utilize MMMF in (3)–(6) based on SXm
m to get Scm

ð0Þ

(6) if Cpa mð Þ ¼ ; then
(7) Scm  Scm

ð0Þ, dPaðmÞ  ;
(8) else
(9) Set s ¼ 0 and dPa mð Þ 0ð Þ ¼ Cpa mð Þ
(10) do
(11) Utilize group LASSO (24)-(25) based on Scm

sð Þ, Scj j 2 dPa mð Þ sð Þ
n o

(12) to get SRm
ðsÞ

and dPa mð Þ sþ1ð Þ

(13) Utilize the adjust MMMF in (17)–(21) based on SXm
m , SRm

ðsÞ
to get Scm

ðsþ1Þ

(14) Set s sþ 1
(15) until convergence condition (26) is satisfied
(16) Scm  Scm

ðsÞ, dPaðmÞ  dPa mð Þ sð Þ
(17) end do
(18) end if
(19) UpdateMc  Mc [ mf g
(20) UpdateMr  k 2 MnMcCpa kð Þ ¼ ;� � [ k 2MnMcCpa kð Þ � Mc

� �
(21) UpdateMu  Mn Mc [Mrf g
(22) end while
(23)return Scmf g dPa mð Þ

n o
, m 2 1, :::,Mf g

2.5. Selection of relevant parameters

In the proposed method, there are many parameters to be tuned; recall that we can set the num-
ber of PCs extracted A and the rank of matrices Xm and Ym, K to be equal (A ¼ K ¼ 10 in the
simulation studies) to avoid information loss in the regression estimation part. In real-world
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applications, A can be selected from PCA with complete signal matrices for each node. On the
other hand, the criterion function for selecting penalty parameters ðk, lÞ is expressed as:

Lm k, lð Þ ¼ 1
Nvalid

XNvalid

i¼1

1

Tj j
X
t2T

xmi tð Þ � x̂mi tð Þð Þ2 (27)

where x̂mi tð Þ results from SCm for root nodes and x̂mi tð Þ ¼
P

l2Pa mð Þ
Ð Tl

0 ĉlmðs, tÞxli sð Þds for other
nodes; Nvalid is the number of validation samples; and ĉlmðs, tÞ is the coefficient function esti-
mated by the model with parameters ðk,lÞ: The candidate sets for the parameters in this work
are Ck ¼ 10�9, 10�8, 10�7, 10�6, 10�5, 10�4f g and Cl ¼ 0, 0:2, 0:4, 0:6, 0:8, 1f g: In real-world cases,
the selection of Ck can be adjusted by the size of Nj j and dimensions of signal matrices. Similar
to the parameter selection criterion, the prediction accuracy is measured as:

MSPE ¼ 1

Nj j
X
m2N

1
Ntest

XNtest

i¼1

1

Tj j
X
t2T

xmi tð Þ � x̂mi tð Þð Þ2 (28)

where Ntest is the number of testing samples.

3. Numerical simulations

In this section, numerical experiments are conducted to verify the efficiency of the proposed
DGM learning framework. As the comparison method, the MMMF is utilized separately on each
node to complete the signal matrices, and then the original DGM learning method with complete
signals is executed, which is named as signal completion plus DGM learning (SC-DGML). The
proposed method illustrated in Sec. 2 is named graph-based signal completion (GBSC). The
advantages of the proposed method in the following simulation studies are shown in terms of
three aspects: (1) different scales of error in signals; (2) different missing data patterns; and (3)
different graph structures, including the density of edges and number of nodes.

Similar to a previous work (Estrada, Paynabar, and Pacella 2021), functional signals in the
simulation studies were generated as follows: for the ith sample of the root node r, it is designed
to be combinations of three Gaussian processes:

xri tð Þ ¼ gpr1 tð Þ þ rr � gpr2i tð Þ þ gpr3i tð Þ
� �

(29)

where the covariance functions of gpr1 tð Þ, gpr2i tð Þ, and gpr3i tð Þ are R1ðt, t0Þ ¼ e�10 t�t0ð Þ2 ,
R2ðt, t0Þ ¼ e�0:1 t�t0ð Þ2 , and R3ðt, t0Þ ¼ 1, respectively. gpr1 tð Þ serves as the curve trend of node r,
gpr2i tð Þ is the autocorrelated effect function in each observation and gpr3i tð Þ is the white noise
function. For the observations from other nodes, the F-to-F linear regression function is designed
to fit the assumption in Sec. 2:

xmi tð Þ ¼
X

l2Pa mð Þ

ðTl

0
clm s, tð Þ xli sð Þdsþ rm�mi tð Þ (30)

where the coefficient function is designed as clm s, tð Þ ¼P3
k¼1aklm tð ÞbklmðsÞ; aklm tð Þ, bklmðsÞ are

GPs with R1, k ¼ 1, 2, 3; �mi tð Þ is a GP with R3, that is, standard normally distributed variables;
and rr,rm are the respective scales of error. For simplicity, the number of grid points is set equal
among all nodes, that is, Lm ¼ L ¼ 50, and Tm ¼ T ¼ 1, which means the observed timepoints
are t 2 T ¼ 0:02, 0:04, :::, 1f g:

The generated data are divided into three sets: a training set, validation set and test set, for
which Ntrain ¼ 80,Nvalid ¼ 20 and Ntest ¼ 50: Additionally, the, data matrices from the training
set are incomplete, while the validation and test matrices are complete. The steps for the whole
simulation are as follows: first, we generate 100, that is, Ntrain þ Nvalid complete signals and
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randomly choose Ntrain samples to execute random deletion; second, we execute the methods on
the Ntrain incomplete signals to construct a trained model using different combinations of param-
eters, and Nvalid samples are used to test the efficiency of the trained model for the selection of
parameters; and finally, Ntest complete samples are tested in terms of the prediction accuracy per-
formance of the methods using the learned DGM and the selected parameters.

To evaluate the performances of the two methods in different situations, four graphs denoted
as G1, G2, G3, and G4 are designed to simulate DGMs with a large/small number of nodes and
dense/sparse arcs. The detailed settings and structures of the designed graphs are shown in
Figure 5 and Table 1.

In the first part, it is assumed that the structure is known, and the influence of the graphs,
including the number of nodes and the density of arcs, is studied. The missing proportion of
data is set to pmiss ¼ 0:5, which means we randomly choose Tmiss 	 Tð Tmissj j ¼ pmiss � Tj jÞ and
delete xmi tð Þ, t 2 Tmiss for each signal of each node. The scale of error is also considered, that is,
rm ¼ r ¼ 0:1 (low noise) and 0:5 (high noise). The results for the two methods in terms of

Figure 5. The four designed graphs. (a) G1: 8 nodes and 8 arcs (1/8 density); (b) G2: 8 nodes and 16 arcs (1/4 density); (c) G3: 16
nodes and 16 arcs (1/16 density); and (d) G4: 16 nodes and 32 arcs (1/8 density).
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learning these four graphs with incomplete signals are shown in Table 2, with Nrepli ¼ 100 repli-
cation times.

Several findings could be extracted from the results. Naturally, prediction errors increase
when the scale of error increases and when the structure of graph becomes complicated, that
is, the number of nodes or arcs increases. Compared to the effect from denser arcs, the
increase in the number of nodes would make the prediction error grow faster. Additionally,
the proposed GBSC method is better than SC-DGML in all situations because that GBSC
combines the signal combination step and coefficient estimation step and integrates informa-
tion from the graph structure when completing the signal matrices. This advantage is more
significant when graphs are more complicated since the structure contains more information.
Neglecting this information would make the SC-DGML method possess large-scale of predic-
tion errors.

In the second part, the assumption of the known structure is preserved, and the performances
of these two methods in terms of different proportions of missing data and in various data-miss-
ing modes are studied. Specifically, the proportion of missing data is set to four levels: pmiss ¼
0, 0:25, 0:5, 0:75f g and three modes of missing data are considered: (a) random missing, which
means we randomly choose Tmiss and jTmissj to be the same for each signal; (b) imbalanced miss-
ing, which means we randomly delete pmiss proportions of data from the matrix instead of signals
but keep Tmissj j 2 ð0� Tj j, 0:75� Tj jÞ for each signal; and (c) non-uniform missing, which means
we randomly delete pmiss proportions of continuous data from each signal. For simplicity, studies
of different missing settings are conducted in G1 with r ¼ 0:1, and detail results are shown in
Table 3.

Table 1. Settings of relevant graphs in the following simulation studies.

Number of nodes Number of edges Density of edges

G1 8 8 1/8
G2 8 16 1/4
G3 16 16 1/16
G4 16 32 1/8

Table 2. Prediction accuracy of the two methods for G1–G4 under two scales of error when the structure is known and
pmiss ¼ 0:5 (standard errors are shown in the parenthesis).

Scale of error GBSC SC-DGML

G1 0.1 0.617(0.20) 1.178(1.26)
0.5 0.732(0.21) 3.341(4.28)

G2 0.1 0.649(0.30) 0.873(0.56)
0.5 0.840(0.59) 4.054(3.46)

G3 0.1 0.711(0.36) 1.278(1.35)
0.5 1.165(1.19) 19.668(43.21)

G4 0.1 1.739(1.85) 3.143(4.86)
0.5 2.382(3.79) 37.654(94.38)

Table 3. Prediction accuracy of the two methods with different missing proportions of data under three missing modes when
the structure is known (standard errors are shown in the parenthesis).

Missing modes Methods

Missing proportions

0 0.25 0.5 0.75

Random missing GBSC 0.449(0.07) 0.519(0.15) 0.617(0.20) 0.804(0.40)
SC-DGML 0.450(0.06) 0.611(0.22) 1.178(1.26) 16.253(21.67)

Imbalanced missing GBSC 0.449(0.07) 0.503(0.10) 0.534(0.16) 0.818(0.34)
SC-DGML 0.450(0.06) 0.509(0.11) 0.745(0.48) 24.752(37.41)

Non-uniform missing GBSC 0.449(0.07) 0.501(0.37) 0.587(0.29) 0.809(0.49)
SC-DGML 0.450(0.06) 0.541(0.25) 1.181(1.72) 22.715(41.33)

14 D. LI AND K. WANG



This table shows that modes of missing data have little influence on the results, which assures
the stability of the proposed method in various situations. Additionally, compared with SC-
DGML, the proposed method is more robust when a large proportion of data is missing. When
little data are missing, the prediction errors of the two methods are close since the observed data
are sufficient to construct a precise model and the advantage of GBSC in terms of signal comple-
tion is less significant.

In the third part, without the known-structure assumption, the performances of the methods
in terms of structure learning are explored. Apart from the prediction accuracy, the similarity
between the learned graph and the true graph is also considered. Comparisons of the learned
graphs and original graphs of G1 and G2 are shown in Figure 6, with the relative confusion
matrices listed in Tables 4 and 5. The proportion of missing data is set to pmiss ¼ 0:5, and the
scale of error is r ¼ 0:1:

The learned graphs from the SC-DGML method of G1 and G2 when pmiss ¼ 0:5 are both fully
connected graphs, that is, ÂSC�DGML ¼ ði, jÞji, j 2 N , i < j

� �
, and therefore the results are not

Figure 6. Comparisons of the graphs learned by the GBSC method and the original graphs when pmiss ¼ 0:5: (a) Original G1;
(b) learned G1; (c) original G2; and (d) learned G2.
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shown in detail. As shown in a previous work (Estrada, Paynabar, and Pacella 2021), the learned
graphs of the SC-DGML method tend to add more arcs that do not exist in the original graphs,
and our results show that this effect is greater when the signal matrices are incomplete. A reason-
able explanation is that in the SC-DGML method, the matrices are completed without informa-
tion from potential F-to-F regression relationships, which would reduce correlations from
variables between nodes and make it difficult for group LASSO to select variables that are truly
related. In the proposed GBSC method, learned graphs are sparser compared with the SC-DGML
method, resulting from the adjusted MMMF and recursive improvements. Although the learned
graphs might miss some of the existing arcs, this relatively sparser graph is more useful in real-
world applications when the graph structure of the system is unavailable. Additionally, the predic-
tion accuracy performance under different circumstances when the graph structure is unknown is
shown in Table 6.

Most of the findings are similar to the case when the structure is known, except that the meth-
ods have better prediction accuracy when the arcs are denser. Consider a simple graph with G ¼
N ¼ 1, 2, 3f g, A ¼ 1, 2ð Þ, 2, 3ð Þ� �� �

: When the structure is known, the data of node 3 are pre-
dicted only by the data from node 2. However, when the structure is unknown, the arc 1, 3ð Þ
might be learned because of the transmission effect. The added arc might actually help better pre-
dict the data of node 3, and this effect occurs more often in denser graphs. Nevertheless, the pro-
posed GBSC method is more stable and accurate than SC-DGML in structure learning, especially
when a large proportion of data is missing.

Finally, we present a further display of how the proposed method recurrently obtains a more
accurate prediction as more information about the graph structure becomes available. When
learning the graph structure, the completed signal by the GBSC method becomes more similar to
the original signal as the number of iterations increases. Additionally, the learned graph also

Table 4. Confusion matrix of the learned G1 for the GBSC method (pmiss ¼ 0:5).

G1: 8 nodes, 8 arcs

Predicted graph

True False

True graph True 6 2
False 6 14

F1 score 0.6

Table 5. Confusion matrix of the learned G2 for the GBSC method (pmis ¼ 0:5).

G2: 8 nodes, 16 arcs

Predicted graph

True False

True graph True 14 2
False 6 6

F1 score 0.778

Table 6. Prediction accuracy of the two methods with different missing proportions of data in G1 and G2 when the structure
is unknown (standard errors are shown in parenthesis).

Methods Scale of error

Missing proportions

0 0.25 0.5 0.75

G1 GBSC 0.1 0.529(0.03) 0.528(0.05) 0.673(0.04) 0.738(0.16)
0.5 0.715(0.37) 0.743(0.56) 0.816(0.41) 0.921(0.25)

SC-DGML 0.1 0.526(0.04) 0.530(0.03) 0.678(0.05) 3.098(6.88)
0.5 0.711(0.28) 0.906(1.29) 1.341(1.57) 16.706(33.41)

G2 GBSC 0.1 0.390(0.22) 0.394(0.07) 0.716(0.27) 1.594(4.36)
0.5 0.603(0.48) 0.728(0.71) 1.190(1.09) 1.281(0.27)

SC-DGML 0.1 0.370(0.18) 0.409(0.07) 0.726(0.33) 4.506(17.15)
0.5 0.623(0.55) 0.951(1.03) 2.607(4.57) 24.175(49.68)
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becomes denser and closer to the true graph. Figure 7 shows the decreasing curve of errors by
the GBSC method between the completed matrix and the original matrix in node 5 of G1 with
missing proportions pmiss ¼ 0:5 and r ¼ 0:1, together with comparisons between the completed
signal and the original signal at different iteration numbers Step ¼ 0, 50, 100f g: The evolution of
the learned graph at these iteration points of the whole G1 graph is shown in Figure 8. Note that
the result when Step ¼ 0 is the same as that from the SC-DGML method.

This decreasing curve of errors can also help determine the parameter of the maximum num-
ber of iterations to avoid redundant computational costs in real-world applications. When com-
plete matrices are unavailable, changes of two continuous estimation matrices could be calculated
as follows, which is similar with differentials of the decreasing curve.

e tð Þ ¼ kS tð Þ
m � S t�1ð Þ

m k2F (31)

Then the curve of eðtÞ can be drawn, and the maximum number of iterations can be chosen so
that eðtmaxÞ is close enough to 0 or below an acceptable threshold.

4. Real-world example

In this section, the proposed GBSC method is applied to the manufacturing process of monocrys-
talline silicone ingots. As mentioned in Sec. 1, the CZ method has become the mainstream
method of monocrystalline silicone production due to the advantages of high-level equipment
automation, simplicity, and efficiency. On the other hand, the CZ method has a relatively longer
cycle time, larger material cost, and higher quality requirement. Typically, there are many sensors
placed in the system that continuously collect data regarding the variables used for system moni-
toring and control. In addition, the CZ method consists of several stages, during which the

Figure 7. Decreasing curve of error and comparisons of the completed signal and original signal in the GBSC method (average
of all replications in node 5 of G1 and pmiss ¼ 0:5).

Figure 8. Evolution of the learned graph.
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relationship among the variables might differ. Therefore, to reduce the heavy loss incurred by
failure events, it is essential to learn the variable relationship structures in the harsh real-world
environments. The two most important and complicated stages, melting and shoulder growth, are
studied in this section.

As the two stages have different physical and chemical mechanisms, the variables that can be
used to characterize the two stages and their relationship also change. In this study, the raw data
contain more than 50 variables. We first split the data records by stages and then remove varia-
bles that have almost constant readings throughout each stage. Finally, nine variables from the
melting stage, denoted as M1–M9, and 13 from the shoulder growth, denoted as S1–S13, are
retained. These include important variables that can characterize the system status and produc-
tion progress, such as diameter measurements, thermal field temperatures, main heater currents
and throttle valve outputs, etc. Signals from several nodes of the two stages are shown in
Figures 9 and 10.

The signal data are collected from 70 ingot samples. We divide the samples as follows: Ntrain ¼
40, Nvalid ¼ 10, and Ntest ¼ 20: The lengths of signals vary from samples, Lmi 2 ð90, 200Þ, and
therefore, all signals are preprocessed such that Lmi ¼ Lm: Since there are multiple samples with
different lengths, traditional signal alignment methods like dynamic time warping (DTW) cannot
be easily used. In this case, a straightforward alignment method is used that all signal samples are
first scaling into one unit of time, for example, signal from ith sample with Lmi grid points are

processed into ~xmi ¼ xmi 0ð Þ, xmi
1

Lmi�1
� �

, :::, xmi
Lmi�2
Lmi�1
� �

, xmi 1ð Þ

 �

: After a piecewise-linear function

fmiðtÞ : 0, 1½ � ! R is estimated by these Lmi points, we can align all sample signals by taking Lm

points as xmi ¼ fmi 0ð Þ, fmi
1

Lm�1
� �

, :::, fmi
Lm�2
Lm�1
� �

, fmi 1ð Þ

 �

: In the monocrystalline growth process,

the length difference mainly comes from different amount of raw materials, that is, polycrystalline
silicon. Also, signals from different samples have similar shape and trend, with few significant or
high-frequency fluctuation as shown in Figures 9 and 10, which makes the preprocessing method
sensible for little information loss. The number of extracted PCs Am is set according to the

Figure 9. Signals for some variables involved in the melting stage (each color represents the signal from each monocrystalline
silicone ingot).
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criterion of PCA using complete data from different nodes, and the dimensions of low-rank
matrices, Km, are set equal to Am: The candidate sets of the penalty parameters are Ck ¼
10�12, 10�10, 10�8, 10�6, 10�4, 10�2f g and Cl ¼ 0, 0:2, 0:4, 0:6, 0:8, 1f g: After randomly deleting the
pmiss ¼ 0:5 proportion of data for each signal, the learned graphs of the proposed GBSC method
are shown in Figure 11.

In this example, the arcs (directed) are replaced by edges (undirected) in the two learned
graphs since no domain knowledge regarding the directions of possible relationships between var-
iables is available. The learned graph in this case is set to be undirected because the aim of using
DGM learning in this case is to learn the potential relationship between variables instead of
causal relationship or control relationship in the process. Since the actual process relationship

Figure 10. Signals for some variables involved in the shoulder growth stage (each color represents the signal from each mono-
crystalline silicone ingot).

Figure 11. Graphs learned by the GBSC method when pmiss ¼ 0:5: (a) Shoulder growth stage; and (b) melting stage.
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might contain loops or both-way feedbacks, which might violate the DGM assumption. To avoid
the learned graphs containing loops, the constraints that l < m is added, and this idea comes
from the previous work when learning DGMs (Estrada, Paynabar, and Pacella 2021).
Therefore, the candidate parents of each node are set as: Cpa mð Þ ¼ l 2 N , l < mf g, and the
learned edges only suggest that there is a possible relationship between these two variables.
Similar to the results from the numerical simulations, the graphs learned by the GBSC method
are relatively sparser and therefore provide meaningful guidance in terms of the potential
structure of the real system. Note that the learned graph clearly separates all variables into
two groups. The first group consists of isolated variables that have no edge connections with
any other nodes. For example, in the melting stage, the thermal field temperature, main heater
current (M4), and liquid level temperature (M6) are relatively stable and are not affected by
(or affect) any other variables; in the shoulder growth stage, the thermal field temperature
(S3), and liquid level temperature (S6) are isolated from the others. The second group consists
of variables that are pairwise connected to each other. For example, in the melting stage, the
main room pressure (M2) and minor room pressure (M3), as well as the main heater power
measurement (M5) and thermal field setpoint (M9) are connected; in the shoulder growth
stage, the main room pressure (S13) and throttle valve output (S10) are connected. Further
verification with engineering knowledge confirms that these identified connections are mean-
ingful in practice.

In addition, some variables, such as the thermal temperature (denoted as M1 and S2 in two
stages) and main heater current (M4 and S3), remain isolated in both stages. This observation
shows that the algorithm is stable in performance since the two graphs are learned separately
using different datasets. Similarly, the main room pressure (M2 and S13), throttle valve opening
measurement (M7 and S8), and throttle valve output (M8 and S10) are mutually connected to
each other in both stages. These findings are also consistent with expert knowledge.

It is also interesting that the variable relationship changes across the two stages. For example,
minor room pressure (M3) was in the connect group in the melting stage but was not in the
graph of the growth stage. This change could be explained by the fact that the variable is critical
and adjusted frequently during the melting stage but remains almost constant during shoulder
growth and was excluded from analysis during data preprocessing. In general, these data-driven
findings regarding the relationships among variables are helpful to engineers when constructing
the true structure of the manufacturing system.

5. Conclusions

In this study, a graph-based signal completion method is used to learn the functional DGM with
incomplete signals, including the functional relationship between nodes and the graph structure.
The proposed method is an extension of the MMMF method, which integrates information from
the F-to-F regression and graph structure, and it adds a penalty term that maintains the regres-
sion effect when filling incomplete matrices. Specifically, compared to other matrix completion
methods that only consider observed data and low-rank assumptions, the added term possesses
potential structural information and can be updated as the completion becomes more accurate.
The results of the numerical experiments and a real-world case study if monocrystalline silicone
manufacturing verify the efficiency of the proposed method in both scenarios, that is, in the case
of a known structure and unknown structure, compared with the SC-DGML method. This
enhanced performance is especially true when the missing proportion of data is relatively large.
In terms of future research, theoretical proof of convergence of the recursive framework needs to
be studied. Additionally, extension of the method to learn nonlinear functional relationships is
needed by many real complex.
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